Item
10 But before titanium dioxide is made into sunscreens, it is first micronized. This is a process that takes ingredients that are normally quite heavy (like titanium dioxide) and makes them both stabler and easier to spread. And when micronized, titanium dioxide doesn’t penetrate the skin. That means that you’re getting all the sun protection benefits without the risk of harming yourself.
Conclusion
90 - Due to their excellent properties, 28B301 and 30B311 are widely used in various applications
Among the raw materials for coating production, titanium dioxide is more ideal, followed by lithopone. The covering power of lithopone is only that of titanium dioxide, and the price of lithopone is much lower than that of titanium dioxide, so lithopone still occupies a large market share.
Nanoparticles

1. Paints and Coatings Due to its excellent opacity and brightness, anatase TiO2 is extensively used as a pigment in paints. The high refractive index of this compound allows for better coverage and durability, making it an essential component in decorative and protective coatings.
Historically, the first mentions of zinc sulfide being utilized as a pigment were approximately sixty years before the everyday use of lithopone. Originally, it was thought to be appropriate for coloring rubber. In England, a patent was granted for this process. Two decades after this, the focus shifted to zinc sulfide as a suitable pigment for paint. The year 1874 witnessed the patenting of a manufacturing process for a novel white pigment composed of zinc sulfide and barium sulfate. Dubbed Charlton white or Orr’s white enamel, this began a new era for white pigments.
Key benefits for stakeholders
The European Food Safety Authority updated its safety assessment of the mineral in March 2020, stating that titanium dioxide can no longer be considered safe as a food additive. This was due to evidence of potentially harmful effects after consumption of the mineral, which may accumulate in the body over time.


Titanium dioxide has many purposes in both food and product development.
Other research suggests that E171 could cause harm; however, those research processes did not consider how people are typically exposed to E171. Research that adds E171 to drinking water, utilizes direct injections, or gives research animals E171 through a feeding apparatus is not replicating typical human exposure.
Research supports that applying titanium dioxide to the skin in the form of sunscreens, makeup, and other topical products does not pose any health risks.
A few processes are used to produce TiO2 pigment. Rutile TiO2 is found in nature. This is because the rutile crystal structure is the thermodynamically stable form of titanium dioxide. In chemical processes natural TiO2 can be purified, thus obtaining synthetic TiO2. The pigment can be made from ores, rich in titanium, that are mined from the earth.
Two chemical routes are used to make both rutile and anatase TiO2 pigments.