- Cellulose, a natural polymer found in plant cell walls, is modified chemically to produce HPMC, a water-soluble compound. The process involves replacing some of the hydroxyl groups on cellulose with hydroxypropyl and methyl groups, thereby altering its solubility and other physical characteristics. This modification imparts HPMC with unique features that make it suitable for various applications, especially in supplement formulations.
- In the realm of advanced materials, RE dispersible polymer powder has emerged as a game-changer due to its unique properties and wide range of applications. This innovative substance, a specialized form of polymer, is designed to be easily dispersed in water or other solvents, offering a myriad of benefits to various industries.
- Despite its numerous advantages, VAE powder is not without challenges. Its production process requires precise control over reaction conditions, and the balance between the two monomers must be carefully maintained to achieve the desired properties. However, ongoing research and development in this field continually strive to optimize the synthesis process, reduce environmental impact, and unlock new applications.
- Change in eyesight, eye pain, or very bad eye irritation.





Chemical composition and origin
Hydroxypropyl methylcellulose (HPMC) is produced by treating natural cellulose with methyl chloride and propylene oxide. Cellulose, the basis of HPMC, is an organic compound found in the cell walls of plants, giving HPMC its plant origin. During the production process, hydroxypropyl and methyl groups are added to the cellulose chain. This chemical process improves the solubility of HPMC in cold water and increases its gelation temperature, making it particularly useful in applications requiring thermal stability.
Comparison with other thickeners
Compared to other thickeners such as gelatin, which is of animal origin, HPMC offers a crucial advantage: it is 100% vegetable. This not only makes HPMC suitable for vegetarians and vegans, but also offers significant advantages in terms of stability and shelf life. HPMC is less susceptible to microbial degradation than gelatin, which is especially important for nutritional supplements and medications that require storage in various climates and conditions. In addition, HPMC is resistant to pH fluctuations. While gelatin can break down or lose its effectiveness at different pH levels, HPMC maintains its stability over a wide pH range, making it an excellent choice for formulations that require consistent performance regardless of the acidic or basic conditions in which they are used .


HPMC gels are used as gelling agents in the food industry. It is used to create a gel-like texture in foods such as desserts, jellies and gummies.

Cellulose is a natural component of plants and occurs abundantly in the environment. The microbial degradation of cellulose and its derivatives (including ethyl cellulose) in the environment is expected. Therefore, the use of HPMC as a feed additive is considered safe for the environment.
JECFA (1990), the SCF (1994), the EFSA AFC Panel (2004) and the EFSA ANS Panel (2018) all considered it unnecessary to set an ADI for celluloses, including HPMC, based on a low toxicity and, if any, negligible absorption in the human gastrointestinal tract.