Valve Cover Gasket and Head Gasket: Critical Sealing Components
Regular inspection and maintenance of oil pan seals, turbo oil seals, and gasket seals are essential to identify signs of wear, damage, or leakage. Proper lubrication and adherence to recommended service intervals can help extend the lifespan of these seals. When replacement is necessary, selecting the correct seal type and ensuring proper installation are critical to maintaining the integrity and performance of the engine.
When included, the garter spring applies pressure to the sealing lip against the shaft, ensuring a tight seal. The choice of material, like that of the case, largely depends on the environment of use.
A
Types of Materials Used for Manufacturing Oil Seals
As can be seen from the seal cross-section shown in Fig. 14.2, shaft seals are complex shapes that require advanced mold design and molding techniques (see Section 7.3 for discussion of fluoroelastomer molding). For some time, most shaft seals were made in the United States by compression molding. Injection molding of shaft seals is prevalent in Europe, and is being used increasingly in the United States. An advantage of compression molding is that preforms (usually rings cut from extruded tubing) are used that closely approximate the amount of stock required for the final parts, so compound waste is minimized. For injection molding, the amount of cured stock in the central sprue and runner (actually a thin sheet leading to the seal lip) is often large compared to the stock required for the final part, so the waste of high-cost fluoroelastomer may be high. Such waste is reduced in modern injection molding designs.
Make sure that the new gasket is clean, and confirm which way round it fits. The upper side is usually marked 'top', 'haut' or 'oben'.

