Developing new Lithopone formulations, one that enhances the properties of the existing Lithopone is anticipated to boost the demand for Lithopone white pigment during the forecast period. Reinforced Lithopone is one such development, wherein a copolymer is added to the polymerization reaction to yield Lithopone with increased weather resistance. Moreover, development of nano-scale Lithopone is anticipated to attract market interest during the forecast period.
The factory's commitment to quality is evident in its production process, which adheres to strict standards and regulations. By using advanced technology and techniques, CAS 13463-67-7 is able to produce titanium dioxide that meets the exact specifications of its customers. This ensures that the final product is of the highest quality and consistency, leading to better performance and results for the end-users.
At present, the equipment and manufacturing process of domestic manufacturers of polyvinyl butyral are constantly getting closer to those abroad. For example, the wonderful use of polyvinyl butyral (PVB) has occurred in the printing industry and ceramic industry. Therefore, the domestic application of polyvinyl butyral (PVB) has an obvious upward trend in recent years.
For example, in the glass industry, it is because polyvinyl butyral (PVB) has good low-temperature impact strength, windability, light transmittance, light resistance, weather resistance, sound insulation, UV insulation and other properties, so that once the laminated glass is sealed together, the glass sandwich (i.e. laminated material) will appear as a whole and look like ordinary glass. For example, in the porcelain industry, polyvinyl butyral is made into a film and used for printing paper film of ceramic (or enamel) products. First, it reduces the original glue small paper Decal process, reduces the production cycle and production cost, and second, it makes its ceramic (or enamel) patterns bright in color and smooth in texture.
With the rapid development of science and technology in recent years, more and more industries have found the characteristics of polyvinyl butyral (PVB): high strength, high toughness, fatigue resistance, corrosion resistance and so on. Compared with traditional materials, polyvinyl butyral (PVB) is more and more widely used because of its larger development space and wider application fields!
Application field of polyvinyl butyral -- safety glass
The membrane made of polyvinyl butyral (PVB) is a special product used to manufacture safety glass and bulletproof glass. Safety glass is a special glass made of a layer of PVB diaphragm sandwiched between two layers of ordinary glass. It has good low-temperature impact strength, windability, light transmittance, light resistance, weather resistance, sound insulation, ultraviolet insulation and other properties. When subjected to strong external impact, PVB diaphragm can absorb impact energy, so that the glass will not break or prevent debris from hurting people. Moreover, the safety glass added with PVB diaphragm has the characteristics of high transparency, water resistance and aging resistance, and can be used in the environment of - 60 ℃. In addition, it can also be used as transparent material to replace plexiglass.
Application field of polyvinyl butyral -- ceramic film flower paper

Relative to a lot of other things that people should be concerned about, titanium dioxide in my mind, is really low on the list. I would be more worried about some substitutes that people are using for titanium dioxide that don't have decades of research associated with it, said Westerhoff.
There are many uses of titanium dioxide that we don't know about because they were made exempt from being on the package in 1977, said Faber, who added that nothing much has changed since – other than the FDA approving some other uses of the color additive, such as expanding the use of mica-based pearlescent pigments (prepared from titanium dioxide) as color additives in distilled spirits over recent years.
We’re most often exposed to E171 through the foods we ingest. We find E171 in many food products, like popsicles, ice cream, gum, and more. Another way we ingest E171 is through pharmaceutical drugs. Many pills and capsules contain E171 as an inactive ingredient.
There are two primary forms of titanium dioxide commercially available: anatase and rutile. The rutile form is typically used in sunscreens due to its superior ability to handle UV rays and stability in the presence of UV light. The anatase form is typically used in other types of products, such as paint. Another plus of the rutile form is that its UVA protection extends past 400 nanometers, which is the upper limit of UVA.
In 2019, EFSA published a statement on the review of the risk related to the exposure to food additive titanium dioxide (E171) performed by the French Agency for Food, Environment and Occupational Health Safety (ANSES). In its statement, EFSA highlighted that the ANSES opinion reiterated the uncertainties and data gaps previously identified by EFSA and did not present findings that invalidated the Authority’s previous conclusions on the safety of titanium dioxide.
The committee could not finalize the assessment of some other flavoring agents, requiring further information. JECFA highlighted the importance of receiving complete data submissions from the sponsors for conducting the safety evaluation.
Zinc Oxide
It's all over the place in our environment, said Dr. Johnson-Arbor.
EINECS: 215-715-5
Although barium sulfate is almost completely inert, zinc sulfide degrades upon exposure to UV light, leading to darkening of the pigment. The severity of this UV reaction is dependent on a combination of two factors; how much zinc sulfide makes up the pigments formulation, and its total accumulated UV exposure. Depending on these factors Lithopone B301, Lithopone B311 powder itself may vary in shade over time, ranging from pure white all the way to grey or even black. To suppress this effect, a dopant might be used, like small amount of cobalt salts, which would be added to the formulation. This process creates cobalt-doped zinc sulfide. The cobalt salts help to stabilize zinc sulfide so it will not have as severe a reaction to UV exposure.