Passenger vans, such as the Ford Transit and Mercedes-Benz Sprinter, are designed explicitly for carrying larger groups. They typically provide maximum seating capacity and often have more cargo space than standard minivans. Their rugged construction is apt for commercial uses, making them ideal for shuttle services and family vacations alike.
In the automotive industry, for example, MBR9668 is used in primers and finish coats to provide superior color retention and gloss. With durability being a key concern for automotive manufacturers, utilizing rutile titanium dioxide in coatings enhances the longevity of the vehicle's exterior finishes, ensuring that they remain vibrant and effective for years under various conditions.
rutile titanium dioxide mbr9668-coating supplier

At the present JECFA meeting, the committee considered additional toxicological studies relevant to the safety assessment of the chemical that investigated its toxicokinetics, acute toxicity, short-term toxicity, long-term toxicity and carcinogenicity, genotoxicity, and reproductive and developmental toxicity, as well as special studies addressing its short-term initiation/promotion potential for colon cancer. The experts acknowledged that a large number of toxicological studies have been conducted using test materials, including nanoparticles, having size distributions and physico-chemical properties not comparable to real-world uses of titanium dioxide as a food additive. The studies on non-representative materials were evaluated by JECFA, but the committee concluded that such studies are not relevant to the safety assessment of the additive.
Titanium dioxide is a naturally-occurring mineral found in the earth’s crust. Because of its white color, opaqueness, and ability to refract light, the ingredient is often used as a pigment, brightener, and opacifier, which is an ingredient that makes a formulation more opaque. Titanium dioxide is also a UV filter and so is an effective active ingredient in sunscreens. It’s often used in cosmetic loose and pressed powders, especially “mineral powder” cosmetics, in addition to other cosmetics, lotions, toothpaste, and soap.
No. EFSA’s role was limited to evaluating the risks linked to titanium dioxide as a food additive. This included an assessment of relevant scientific information on TiO2, its potential toxicity, and estimates of human dietary exposure. Any legislative or regulatory decisions on the authorisations of food additives are the responsibility of the risk managers (i.e. European Commission and Member States).
Lithopone was developed in the 1870s as a substitute for lead carbonate (lead white), to overcome its drawbacks of toxicity and poor weathering resistance. Within a few years, titanium dioxide displaced lithopone to become the white pigment (PW6) par excellence in the industry and the world’s best-selling inorganic pigment. However, titanium is a product whose price is subject to large price variations due to product availability. These price increases affect the competitiveness of finished products, and so the search for an alternative to titanium dioxide has generated a variety of possibilities to optimise its use.

two million twenty-one thousand one hundred and twenty-eight
So, what does it all mean for you, the consumer? Should you stop eating Skittles or begin checking foods for the presence of titanium dioxide? Here's a closer look.
Preparation of Lithopone:
In beauty and personal care products, the ingredient is listed with its colour index (CI) number ‘CI 77891’. When nano grade titanium dioxide is used in our sunscreens, this is referenced as ‘titanium dioxide’ [nano] in the ingredients list.
TiO2 comes in many different forms. However, only a few of these forms are considered food-grade (acceptable to be added to food). Many studies that raised concern about the safety of TiO2, including the concern for genotoxicity, used forms of TiO2 that are not considered acceptable for use in food and have different properties than food-grade TiO2. Other studies did use food-grade TiO2, but took steps to break the material down into smaller particles than what would normally be found in food.