Also known as a Rotary Shaft Seal, Shaft Seal, Lip Seal, Elastomeric Lip Seal or any variation of these. It is a simple device for excluding dust, dirt, water or any other contaminant whilst retaining lubricant in rotary shaft equipment. Generally, it has been developed as a means of protecting the bearings of rotating shafts.
Common causes of oil seal failure
- **Conclusion
Material Code ISO 1629



There is a British Standard laid down for the control of synthetic rubbers. BS 3574 (1989) helps to determine shelf life – for instance, Nitrile (NBR) and Polyacrylic (ACM) are Group ‘B’ rubbers and have a 7-year life, whilst Silicone (VMQ) and Fluoroelastomers (Viton®) are Group ‘C’ rubbers and have a 10-year shelf life. PTFE and Leather do not come into this category but like the others should be kept in the original packing for as long as possible away from direct light, dust, and humidity. Ozone, which can also be produced by battery-driven forklift trucks has a very bad effect on synthetic rubbers. Finally, protect the sealing lip – DO NOT hang the seals on nails, wire etc.
Have two plugs, such as old pencils, ready to fit the pipes. Unscrew the pipe connections and plug them at once.
Operating temperatures for engine oil seals (see Fig. 14.11 and cross-section of lip seal with garter spring in Fig. 14.22) vary widely, depending on engine design and location within the engine. Typically, the rear crankshaft seal is subjected to much higher temperatures than the front seal. Oil sump temperatures vary considerably, depending on provisions for oil cooling. This allows use of hydrogenated nitrile (HNBR), silicone, or acrylic elastomers for some seals in relatively low-temperature environments (120–140°C or 250–284°F). Standard fluoroelastomers (FKM), bisphenol-cured VDF/HFP/TFE terpolymers with 68–69% fluorine content, perform well in oil service up to about 160°C (320°F). More resistant fluoroelastomers are necessary for reliable long-term performance in more severe environments.
When selecting spark plugs for motor vehicles, it is important to consider the specific requirements of the vehicle, including heat range, electrode design, and material composition. Iridium spark plugs are known for their fine-wire electrode and superior durability, making them suitable for a wide range of motor vehicle applications. The use of high-quality iridium spark plugs can contribute to optimized engine performance, fuel efficiency, and emissions control, ensuring reliable operation and reduced environmental impact.