There's also evidence that inhaling titanium dioxide particles can be dangerous. That's mainly a concern for industrial workers. In places where it's produced, or where it's used to make other products, workers can breathe it in as a dust. The Occupational Health and Safety Administration has exposure standards manufacturers must meet.
Conclusion
Prof Matthew Wright, both a member of the FAF Panel and chair of EFSA’s working group on E 171, said: “Although the evidence for general toxic effects was not conclusive, on the basis of the new data and strengthened methods we could not rule out a concern for genotoxicity and consequently we could not establish a safe level for daily intake of the food additive.”
CSPI’s Chemical Cuisine is the web’s definitive rating of the chemicals used to preserve foods and affect their taste, texture, or appearance. Besides titanium dioxide, the group recommends avoiding artificial sweeteners like aspartame, acesulfame potassium, and sucralose, as well as synthetic food dyes like Yellow 5 and Red 3. CSPI and others have recently asked the Food and Drug Administration to ban the latter dye in foods and ingested drugs because the FDA has already determined that it is a carcinogen unsafe for use in cosmetics.
Currently, titanium dioxide as a food additive is classified as GRAS, or “generally recognized as safe.”
A significant body of research, mostly from rodent models and in vitro studies, has linked titanium dioxide with health risks related to the gut, including intestinal inflammation, alterations to the gut microbiota, and more. It is classified by the International Agency for Research on Cancer (IARC) in Group 2B, as possibly carcinogenic to humans.
This cytotoxic effect was also reported before; i.e. Natarajan et al. conducted an experiment that found a strong oxidative stress, morphological changes in mitochondria and substantial loss in the fusion of primary hepatocytes exposed to P25TiO2NPs [52].
Rebecca Capua

titanium dioxide ph manufacturer. The company's team of experienced engineers and researchers work closely with customers to develop tailor-made solutions that meet their unique requirements and specifications.

Food safety experts in the European Union (EU) have recently updated their safety assessment of TiO2 as a food additive. In Europe, TiO2 is referred to as E171, in accordance with European labelling requirements for food additives. The EU expert panel took into account toxicity studies of TiO2 nanoparticles, which to this point had not been considered relevant to the safety assessment of TiO2 as a food additive.
Titanium alloy is widely used as a biomaterial due to its superior biocompatibility, mechanical properties close to human bones, and enhanced corrosion resistance. These properties have made the alloys suitable for use in a wide spectrum of biomedical applications including artificial bones, artificial joints, dental roots, and medical devices. The excellent performance of titanium alloy is mainly due to the oxide film as shown in Figure 1 [1]. The functional composition of the oxide film is mainly titanium dioxide (TiO2). Titanium dioxide has good biocompatibility, stable chemical property, and low solubility in water, which prevents substrate metal ions from dissolution. Furthermore, it also improves the wear and fatigue resistance of implants in the human body.
Titanium dioxide can boost and brighten colors because of how well it absorbs and also scatters light. In food and drugs, this additive is known as E171 and helps define colors clearly and can prevent degradation (cracking and breakdown of materials) from exposure to sunlight.
Testing samples were made mixing 100 uL of TiO2NPs suspensions (0.2 mg/mL and 0.02 mg/mL) and vitamins@P25TiO2NPs (0.2 mg/mL and 0.02 mg/mL) with 100 μL ATCC 29,213 methicillin-sensitive Staphylococcus aureus (MSSA) (107 in PBS, pH 7). Controls were made replacing nanoparticles with the same volume of PBS. The concentrations of nanoparticle suspensions were chosen based on the FDA approved maximal and the minimal amount usually found in sunscreens, which are 20% and 2% (this is equivalent to 0.2 mg/mL and 0.02 mg/mL for nanoparticles suspensions). The cream concentration, on the other hand, was an intermediate value of 10%.
Food additive or carcinogen? The growing list of chemicals banned in EU but used in US, by Mikaela Conley, The Guardian, June 23, 2022
1: Flocculation principle
What Is Titanium Dioxide?
Titanium dioxide is widely used as a color-enhancer in cosmetic and over-the-counter products like lipsticks, sunscreens, toothpaste, creams, and powders. It’s usually found as nano-titanium dioxide, which is much smaller than the food-grade version (7Trusted Source).


Natural barite and anthracite containing more than 95% barium sulfate are mixed and fed at a ratio of 3:1 (mass). After being crushed to a diameter of less than 2cm, it enters the reduction furnace. The furnace temperature is controlled to be 1000-1200°C in the front section and 500-500 in the back section. 600°C, the reduction furnace rotates at a speed of 80 seconds per revolution, and the reaction conversion rate is 80% to 90%.