- One of the most promising applications of TiO2 in medicine is its use as a drug delivery system. Due to its biocompatibility and ability to encapsulate drugs, TiO2 nanoparticles can be engineered to release medication slowly over time, improving treatment efficacy and reducing side effects. This technology has been explored extensively in China for targeted drug delivery in treating diseases like cancer and diabetes.
Currently, titanium dioxide as a food additive is classified as GRAS, or “generally recognized as safe.”
In 2019, EFSA published a statement on the review of the risk related to the exposure to food additive titanium dioxide (E171) performed by the French Agency for Food, Environment and Occupational Health Safety (ANSES). In its statement, EFSA highlighted that the ANSES opinion reiterated the uncertainties and data gaps previously identified by EFSA and did not present findings that invalidated the Authority’s previous conclusions on the safety of titanium dioxide.
- The commitment to excellence does not stop at production methods; it extends to the research and development of new lithopone formulations
- Rutile titanium dioxide, identified by its unique crystal structure, is renowned for its exceptional brightness and high refractive index. These properties are further enhanced in the R-906 grade, which is meticulously processed to provide superior performance in printing inks. The R-906 pigment boasts a uniform particle size distribution, ensuring optimal coverage and consistent color reproduction. Its fine particles seamlessly blend with the ink's binder system, resulting in a smooth, homogeneous mixture that yields crisp, vivid prints.
- Consumers seeking the best titanium dioxide products are turning towards brands that prioritize sustainability
Lithopone, a white pigment composed of a mixture of zinc sulfide and barium sulfate, has become an indispensable ingredient in the paint industry. Its unique properties, including excellent opacity, high brightness, and resistance to weathering, make it highly valued among paint manufacturers. As the demand for sustainable and efficient paint products grows, the role of lithopone and its suppliers has become more critical than ever.
“Unlike some other chemicals used in food, titanium dioxide has no nutritive, preservative, or food safety function—its use is purely cosmetic,” said CSPI principal scientist for additives and supplements, Thomas Galligan. “The prospect of titanium dioxide nanoparticles damaging DNA is concerning enough for us to recommend consumers avoid foods that have it.”
Toxic effects of TiO2 NPs on soil organisms
Food safety experts in the European Union (EU) have recently updated their safety assessment of TiO2 as a food additive. In Europe, TiO2 is referred to as E171, in accordance with European labelling requirements for food additives. The EU expert panel took into account toxicity studies of TiO2 nanoparticles, which to this point had not been considered relevant to the safety assessment of TiO2 as a food additive.
Titanium dioxide is a naturally-occurring mineral found in the earth’s crust. Because of its white color, opaqueness, and ability to refract light, the ingredient is often used as a pigment, brightener, and opacifier, which is an ingredient that makes a formulation more opaque. Titanium dioxide is also a UV filter and so is an effective active ingredient in sunscreens. It’s often used in cosmetic loose and pressed powders, especially “mineral powder” cosmetics, in addition to other cosmetics, lotions, toothpaste, and soap.
Titanium dioxide R-5566 can be widely used in indoor and outdoor coatings, latex paints, powder coatings, inks, papermaking, rubber, plastics, masterbatches.
One of the most common worries about titanium dioxide is that it could be a cancer-causing agent. The link between cancer and titanium dioxide traces back to a 1985 study where rats were exposed to high levels of titanium dioxide for two years, causing lung cancer. However, not all experts are convinced by this study.



Drobne et al. used the terrestrial arthropod Porcellio scaber as a test organism for determining the cytotoxic effect of TiO2 NPs (anatase). The animals were exposed to TiO2 NPs of two different sizes (25 nm and 75 nm) in the concentration range 10–1000 μg TiO2/g dry food for 3 to 14 days. No adverse effects, such as mortality, body weight changes or reduced feeding, were observed. In fact, quite the opposite, an enhanced feeding rate, food absorption efficiency and increase in catalase activity were observed. The intensity of these responses appeared to be time- but not dose-dependent. It should also be noted that the concentrations tested in this study were much higher than the predicted concentration (4.8 μg/g soil) at high emission scenario of nano-sized TiO2. Using the same test organism another group showed that exposure to TiO2 NPs induced destabilization of cell membrane in the epithelium of digestive glands isolated from exposed animals. They also showed that this effect can be observed after just 30 minutes of exposure.
Product Name: Lithopone


Restraint
If you want to avoid titanium dioxide, Stoiber and Faber urge consumers to try and avoid processed foods as best as you can.
The global Lithopone market size was valued at $169.8 million in 2019, and is projected to reach $218.6 million by 2027, growing at a CAGR of 3.3% from 2020 to 2027.