- Candies and sugar-based treats
- When choosing a P25 TiO2 supplier, it is crucial to consider factors such as particle size distribution, purity, and specific surface area. These factors can significantly impact the performance and quality of the final product. Therefore, it is essential to work with a reputable supplier who can provide high-quality P25 TiO2 that meets your specific requirements.
- Cristal Global, headquartered in Saudi Arabia, is one of the world's largest producers of TiO2. They offer a broad range of grades tailored to specific end-use applications. Tronox, another major supplier, operates mines and production facilities globally, ensuring a consistent supply chain.
- However, handling and distribution of dioxygen dioxide require special precautions due to its reactivity and potential health hazards
The major restraint to the global Lithopone market is the availability of numerous white pigment substitutes. It can be replaced by other inorganic white pigments such as Titanium Dioxide (TiO2) and Sachtolith. Among these substitutes, the introduction of TiO2 has reduced the commercial importance of Lithopone white pigment. Compared to other white pigments, TiO2 has high brightness and refractive index, which results in lower pigment loading.
Following the EU’s ban on E171, the FDA told the Guardian that, based on current evidence, titanium dioxide as a food additive is safe. “The available safety studies do not demonstrate safety concerns connected to the use of titanium dioxide as a color additive.”
It's all over the place in our environment, said Dr. Johnson-Arbor.



Below 10% substitution, 1 kg of TiO2 should be replaced by 1 kg of lithopone supplier 30%.
A 2023 study published in the journal Environmental Research, scientists examined the effect of titanium dioxide nanoparticles on important gut bacteria in mice. Their results showed “the growth inhibitory effects could be associated with cell membrane damage caused by titanium dioxide nanoparticles to the bacterial strains. Metabolomics analysis showed that TiO2 NPs caused alterations in multiple metabolic pathways of gut bacteria, such as tryptophan and arginine metabolism, which were demonstrated to play crucial roles in regulating gut and host health.” The researchers also found that four different neuroprotective metabolites “were significantly reduced” in urine and in vitro bacteria and vivo urine samples. The researchers concluded: “Increasing evidence implies that the gut microbiome plays a profound role in regulating host metabolism. Our results illustrated that TiO2 NPs hindered the growth of four beneficial gut bacterial strains.”
As the global demand for tires continues to rise, driven by increasing vehicle production and the expansion of the automotive industry, the market for titanium dioxide also experiences growth. Wholesale suppliers of TiO2 play a vital role in ensuring a stable supply chain for tire manufacturers. By sourcing high-quality titanium dioxide from reliable manufacturers, tire producers can maintain consistent product quality and performance standards.



Inhaling high concentrations of titanium dioxide dust or fumes, which may occur in occupational settings — such as in the production or processing of products containing the mineral — may cause respiratory problems like coughing, wheezing and shortness of breath, in addition to eye and skin irritation.
We've used titanium dioxide safely for decades. However, recently its safety was called into question.
At CRIS, we've explored the safety of titanium dioxide for nearly half a decade, including conducting double-blind research to test the safety of food-grade titanium dioxide (E171). Our study shows that when exposed to food-grade titanium dioxide in normal conditions, research animals did not experience adverse health outcomes.
It's important to emphasize that in a National Institutes of Health study, experimental animals were exposed to titanium dioxide in amounts as high as 5% of their diet for a lifetime and showed no evidence of adverse effects.
A handful of studies greatly influenced the decisions made by the European Food Safety Authority (EFSA). Unfortunately, these studies did not consider that titanium dioxide exposure comes from food, not drinking water. Additionally, CRIS researchers could not reproduce the adverse outcomes identified by the studies through typical food ingestion. Regardless, the EFSA banned E171 as a food ingredient and for use in other capacities in the summer of 2022.
In 2022, the United States, United Kingdom, and Canada maintained that the scientific evidence supports that titanium dioxide (E171) is safe for humans to use and consume.
Thermogravimetric analysis (TGA) was conducted in a sample of vitaminB2@P25TiO2NPs using a TA-THA Q5000 equipment. Temperature ramp rate: 10 °C/min, maximum temperature: 1000 °C, under air. Part of the same sample was mounted on conductive copper tape grids and observed through a Carl Zeiss Sigma scanning electron microscope (SEM) with an EDS probe, at the “Laboratorio de Microscopía y Análisis por Rayos X” (LAMARX) of National University of Córdoba (Argentina).